High Precision

Ordinary Rounding

New Method

n

a(n)

a'o(n)

a'(n)

0

32765.0156

32765

32766

1

21386.3712

21386

21387

2

992.9455

993

993

3

-6826.4739

-6826

-6827

4

-941.9129

-942

-943

5

3753.0633

3753

3752

6

862.0648

862

862

7

-2346.7999

-2347

-2346

8

-760.4611

-760

-760

9

1522.7395

1523

1522

10

645.6166

646

644

11

-986.6937

-987

-988

12

-526.4166

-526

-527

13

624.1586

624

624

14

411.0701

411

411

15

-378.5124

-379

-379

16

-306.2520

-306

-307

17

215.8401

216

215

18

216.5513

217

216

19

-112.6784

-113

-113

20

-144.2876

-144

-145

21

51.3508

51

50

22

89.6510

90

88

23

-18.1667

-18

-19

24

-51.1279

-51

-51

25

2.6714

3

3

26

26.0694

26

26

27

2.7570

3

3

28

-11.3053

-11

-10

29

-3.2459

-3

-1

30

3.8829

4

6

31

2.4990

2

4

32

0.0785

0

1

33

-0.2136

0

0

Max Ripple

Pass band

0.0005dB

0.0011dB

0.0035dB

Stop band

-132.1dB

-79.7dB

-97.7dB

Description

This symmetrical low-pass FIR filter is designed for factor 2 decimation (down sampling). The high precision coefficients are scaled so that the center coefficient is close to 2^15.

The pass band is [0; 0.2] and the stop band is [0.3; 0.5] relative to the sampling frequency.

The table below shows the result of ordinary rounding (round to nearest) and the best result from 100 trials using the new method (with coefficients b1= b2 =1.96285 and b3 = 1).

Coefficients

FIR Example